ar X iv : c s . C C / 9 90 60 08 v 1 4 J un 1 99 9 Average - Case Complexity of Shellsort
نویسنده
چکیده
We prove a general lower bound on the average-case complexity of Shellsort: the average number of data-movements (and comparisons) made by a p-pass Shellsort for any incremental sequence is Ω(pn) for every p. The proof method is an incompressibility argument based on Kolmogorov complexity. Using similar techniques, the average-case complexity of several other sorting algorithms is analyzed.
منابع مشابه
ar X iv : c on d - m at / 9 60 31 90 v 1 2 9 M ar 1 99 6 The Four - Dimensional XY Spin Glass
متن کامل
ar X iv : c s . C G / 9 90 70 25 v 1 1 6 Ju l 1 99 9 The union of unit balls has quadratic complexity , even if they all contain the origin
We provide a lower bound construction showing that the union of unit balls in R has quadratic complexity, even if they all contain the origin. This settles a conjecture of Sharir.
متن کاملar X iv : h ep - l at / 9 90 60 02 v 1 1 J un 1 99 9 Exploring the π + – π + Interaction in Lattice QCD
متن کامل
ar X iv : c on d - m at / 9 80 60 82 v 1 [ co nd - m at . m tr l - sc i ] 5 J un 1 99 8 Magnetic Particles
متن کامل
ar X iv : c s / 99 08 00 6 v 1 [ cs . C G ] 1 1 A ug 1 99 9 Computational Geometry Column 36
Two results in “computational origami” are illustrated. Computational geometry has recently been applied to solve two open problems in “origami mathematics.”
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006